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I. INTRODUCTION

In the work described in this report, the phenomenon of target radar
cross section dependence on transmitted frequency was investigated as a can-
didate technique for target classification. Very simply, the phenomenon
results from the fact that a target consists of several individual reflectors
which constructively or destructively interfere, depending on their range
separation and on the tranmitted frequency. Thus, over a given frequency
diverse bandwidth, the received signal amplitude will fluctuate or scin-
tillate, and these scintillations can be analyzed to determine target
characteristics.

Frequency diversity has long been investigated as a method of improving
target detection1‘4, tracking accuracy 5-7, and range resolution.8 More
recently, frequency diverse target scintillation has been studied as a tech-
nique for acquisition and classification of stationary targets.9'13 Also, fre-
quency diversity, combined with polarization diversity, has been investigated
both experimentally and theoretically; in these techniques, amplitudes and
relative phases are measured to obtain stationary target signatures.14‘18

The purpose of the present experimental effort was to design and build a
94 GHz radar and to evaluate the utility of the radar for detecting frequency
diverse radar cross section effects. A few additional measurements were made
with a 140 GHz radar, and these data are also presented and discussed.

In Section II, a brief theoretical analysis of expected results is
outlined. Descriptions of the two radar systems used in this experiment are
given in Section III, and the signal processing and measurement techniques are
also discussed.

Experimental data taken for corner reflectors at various range spacings
are presented in Section IV. The frequency calibration method used is
deacribed, and range separation values obtained with radar results are com-
pared with measured values.

For the 94 GHz data, a computer simulation program was developed for com-
parison. A description of the program is given in Section V, while, in
Section VI, the agreement and discrepancies between the theoretical and
experimental results are discussed.

Finally, in Section VII, conclusions from the simulated and experimental
results are drawn with respect to radar characteristics, and recommendations
for further research are given.

IT. MATHEMATICAL ANALYSIS

Consider a target consisting of n reflectors with radar cross sections
(RCS) 04, 0, 0%, « + « Oy Assume that the target is stationary and that all
reflectors are equally illuminated by the radar. The target is in the far-
field of the radar, and vice versa. Assume aleo that the typical linear
dimension of the reflectors is much larger than the transmitted wavelength
(optical region). In general, the RCS of the individual reflectors will vary
as the frequency squared, as for flat plates and corner reflectors. However,
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the frequency diverse bandwidth is assumed to be sufficiently small that thease
changes in RCS are negligible.

Let Rij be the range to the ith reflector, and define
By - 'Rj - Rq ’ €D)

that is, Riﬁ is the range separation between the ith and the jth reflector.
It can be shown that, for a continuous wave radar, the square-law detected
signal voltage, V(f), is given vy!3

V(f) -A{01+02+03+00.00+Un
2R12
v 205753 cos2n (.._..c_>f]

+ 2Jo1o3 008[21t (Z—R(g)f]

+ 2J0505 cos[2x (;E%ﬁ)f]

+ o o o} (2)
or
n n n 2R
W) = A5 o+ 5 Y ﬁo’j'cos[h:(_%ﬁ}f]}- (3)
$=1 i=1 3=
183

Here A is a parameter depending on target range, transmitted power, and
characteristics of the radar; c is the speed of light, and f is the
transmitted frequency.

If the voltage signal is measured as a function of frequency, there is a
constant "dc” level and a superposed "ac” waveform which is periodic with
frequency.

The result is analogous to a time domain periodic wave form; here time is
analogous to frequency, and frequency is analogous to the quantitiy

fiJ = 2_R§L . (4)

Note that this "frequency” £33 is the time it takes electromagnetic energy to
make a round trip bdetween the ith and jth reflectors.
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Equation (3) shows that, mathematically, the Fourier transform of V(f) is
already performed. The transform of V(f) should show a spike of amplitude

Ajy = ZAJ"—i?J- (5)

at a "frequency” of f;j (Equation (4)).

Bach pair of reflectors contributes a spike to the Fourier transform,
although two pairs with equal range separation contribute to the same spike
and, thus, cannot be distinguished. However, a high degree of structural
periodicy in the target, i.e., many reflectors with equal spacing, would
result in a strong spike at the characteristic range separation. The number
of contributions to the Fourier transform spectrum increases in an arithmetic

series with the number of reflectors; for n reflectors, there are 1/on(n-1)
contributing pairs.

All the experimental data taken were for two or three reflectors. For
the two reflector case, the V(f) (or "interference pattern”) is given by

V(f) = Aoy + ap & ZJETEE cos[2n<23i2) f]} (6)

i.e., a single sinusoidal oscillation. For three reflectors,

v(if) = A{0'1 + 02 * 03
+ 2‘|a1 o2 cos [21:<2R12) £]
+ 20103 cos[?u(EE%;> fﬂ

v 25753 cos [zu(?.*igz) ) )

so that V(f) in this case is a superposition of three sinusoidal oscillations.

In terms of these oscillations, one complete cycle will be observed when

the cosine argument changes by 2rn, or when the change in frequency, Af, is
such that

Af = 5{23- . (8)

The frequency diverse bandwidth (Af) required to see one complete oscillation
in V(f) is calculated in Table 1 for various reflector ssparations. The
values were chosen to aid in understanding the experimental data.
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TABLE 1. FREQUENCY DIVERSE BANDWIDTHS.

Reflector Range Frequency Diverse Bandedth
Separation Rjj Required for One Cycle in V(f)
(Meters) (MHz)

10 15.0
25.0
30.0
37.5
50
75

150

300

1.5 GHz
15 GHz

(o]

OO NNWAOIO
- OO
(2]
33 3
—t e

(2]

III. DESCRIPTION OF RADAR SYSTEMS
A. 94 GHz Radar System

The 94 Ghz radar system is depicted in Figure 1. The millimeter
source is a continuous wave (cw) klystron with a nominal power of 300 mW and a
nominal electronic tuning 3 dB bandidth of 200 MHz. The klystron reflector
voltage is sawtooth wave modulated at a 1 KHz repetition rate to sweep the
klystron over its entire tuning range. Some of the output is coupled to a
thermistor for monitoring the power. Also, some of the power is coupled
through a cavity wavemeter (for ballpark frequency measurements) to a square
lavw detector (for monitoring the transmitted power waveform). The power at
the transmit antenna for this experiment is estimated to be about 200 mW. A
linear vertically polarized wave was transmitted.

The receiver consists of an antenna, a square law detector with a sen-
sitivity of about 600 mV/mW, and a low noise preamplifier used at a gain of
ten and an input impedance of 1 MegOhm. The receive signals were monitored
with a low bandwidth (500 KHz) high sensitivity (1004V/division) oscilloscope
triggered by a 1 KHz sync pulse from the waveform generator. As shown in
Figure 1, the received waveform consisted of the broad "interference pattern”
(received signal vs klystron reflector voltage) during the sawtooth rise, and
a compressed version during the sawtooth fall.

This signal was applied to a boxcar averager/gated integrator, also
triggered at 1 KHz by the waveform generator. The boxcar averager provides a
variable size aperature which may be positioned anywhere during the received
interference pattern. The gated integrator is operated in the exponential
averaging mode, which provides a weighted average output; that is, the most
recent pulses have more influence than early pulses. The output of the boxcar
averager can be considered to be the average of 2 TC/AD repetitions of the
signal falling within the aperture, where TC is the selected integration time
constant and AD is the selected aperture duration. For this experiment,
TC=1.0 s and AD~10 8, 80 there was essentially no pulse integration.
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The boxcar averager provides for the automatic scan of the aperture bet-
ween selected limits and also provides a scan voltage proportional to the
aperture position. Thus, data were taken by sweeping the aperature once
across the broad interference pattern and plotting boxcar integrator output vs
scan voltage (or, equivalently, reflector voltage) on an X-Y recorder. The
sweep time was about 18 s, and a boxcar integrator signal time constant of O.f
s (lovw pass filter) provided some smoothing of the interference pattern.

B. 140 GHz Radar System

The characteristics of the 140 GHz radar have been documented exten-
sively and specifications are presented in Tables 2-4.19 The frequency of the
radar is manually adjustable over a 600 MHz bandwidth. Data were taken by
measuring the pulse height of the target response on an oscilloscope (A-scope)
as a function of frequency. Only the observed maxima and minima points were
recorded.

TABLE 2. TRANSMITTER PERFORMANCE SPECIFICATIONS.

[~ TRANSMITTER - Coherent/Pulse Compression
Operating Frequency 142.02 GHz
Transmitted Peak Power 10 mW (10 dBm)
Equivalent Peak Power 600 mW (28 dBm)
Transmitted Pulse Width 3 usec
Compressed Pulse Width 50 nsec
Chirp Bandwidth 20 MHz
Pulse Compression Ratio 60
PRF 30 kHz
Pulse Repetition Interval 3%3.3 vusec
Duty Cycle 9%

Average Transmitted Power 0.9 mW
Frequency Diversity Bandwidth 660 MHz

TABLE %. RECEIVER PERFORMANCE SPECIFICATIONS.

RECEIVER - Pulse-Doppler with Pulse Compression
First LO Frequency 140.67 GHz
First IF Frequency 1395 MHz
Second LO Frequency 1275 MHz
Second IF Frequency 120 MHz
Noise Figure (SSB) of First Mixer 13 dB
First Mixer Preamplifier Gain 26 4B minimum
Circulator Frequency Range 142 + 1 GHz
Circulator Isolation 18 dB minimum
Circulator Insertion Loss 1.6 dB maximum
Circulator VSWR 1.40 maximum
Unambiguous Range ~5 km
Receiver Bandwidth 24 MHg
SAW Line Bandwidth 25 MHgz
Range Cell (3-usec pulse) 1500 ft
Range Cell (50-nsec pulse) 25 ft

10




TABLE 4. TRACKING/GUIDANCE ANTENNA SPECIFICATIONS.

Type Cassegrain, Conscan
Operating Frequency 142 GHgz
Diameter () 60 cm
3-dB Beamwidth (0p ~ A/%) 0.230 = 4,0 mrad
(0.23% = 4.0 mrad)
Gain (Gp ~ 45 A/32) 56.2 dB (59 dB)
(+ etficiency ~ 50%)
Sidelobe Level -16.3 4B
Crossover Points 3 dB «> 2.0 mrad offset
1.5 dB « 1.1 mrad offset
VSWR 1.15
Polarization Linear, Vertical
Conical Scan Rate 30 to 90 Hz
Angle of Rirat Sidelobe (~ 6 mrad)
Far Field (R > 2D2/;) (R > 340 m)

IV. EXPERIMENTAL RESULTS
A. 94 GHz Radar Data

The measurements made with the 94 GHz radar were taken in the High
Bay area of Building 5400, Redstone Arsenal, Alabama. The target range was
~80 meters, satisfying far-field conditions for both radar and target. The
transmit and receive antennas were side-by-side, and their centers were
aprroximately 1 meter above the concrete floor. Antenna beamwidths are
0.4° and 0.6°, so that the antenna main lobes did not intersect the floor at
the target (no main lobe multipath). The 3 dB beamwidths of the transmit and
receive antennas overlapped each other by approximately 30 cm at the target.

The first data taken were a series for the two corner reflectors
separated by 6, 5, 4, 3, 2, and 1 meters. These results are shown in Figures
2-T. The corner reflectors were triangular trihedrals with RCS of 200 sm ana
91 sm. The larger corner reflector was behind and above the smaller corner
reflector. The scales shown on the data are relative amplitudes
(uncalibrated); the klystron reflector voltage range is about 100 V, while *the
video output (boxcar integrator output) is on the order of millivolts. These
data show the expected result--a single oscillation modified by the
transmitter power curve. As a measure of the transmitter (and receiver) power
curve, data were taken for the transmit waveform monitor ocutput (Figure 8)
and for each corner reflector separately (Figure 9 and 10). The power curve
of Figure B is similar to typical reflex klystron power output characteriatics
(Figure 11).20 Using the boxcar aperature in conjunction with the cavity
wavemeter, the total operating range was determined to be approximately from
93.96 Ghz to 94.11 Ghz (+ 0.01 GHz), or a total of about 150 MHz. The center
frequency (maximum power point) was 94.05 GHz. The 3 dB electronic tuning
bandwidth is around 100 MHz, which is about half that claimed by the manufac-
turer.

The klystron frequency is clearly not a linear function of reflector
voltage, 80 the data obtained for 2 reflectors separated by 6 meters was used
to calibrate frequency change vs reflector voltage change. These calibration
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Figure 2.

Two reflectors separated by 6 meters.
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Figure 3. Two reflectors separated by 5 meters.
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Figure 4. Two reflectors separated by 4 meters.
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Figure 6. Two reflectors separated by 2 meters.
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Figure 7. Two reflectors separated by 1 metor.
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Figure 8. Transmitter power curve.
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Figure 9. 200 sm reflector only.
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data were then used to analyze the results for other separations and, in par-
ticular, compare the range separation calculated from the radar data to the
actual range separation as determined with a tape measure.

Figure 12 indicates how the calibration was made. The position of each
maxima and minima, indicated by a vertical line, was estimated to the nearest
one half linear unit by bisecting the given half cycle at its half height.
These data are given in Table 5. From Table 1, it is seen that, for a 6 meter
separation, the maxima are 25 MHz apart, so that the extrema are 12.5 MHz
apart. The first maximum was arbitrarily assigned a value of 25 MHz. The
data of Table 5 are plotted in Figure 13; typical frequency characteristics
shown in Figure 14 are similar.20

TABLE 5. FREQUENCY CHANGE CALIBRATION DATA

Extrema Klystron Reflector Change In
Voltage Change Frequency
(linear units) (MHz)
Maximum # 11.0 25.0%
Minimum #1 18.0 37.5
Maximum #2 27.0 50.0
Minimum #2 34.5 62.5
Maximum #3 42.5 75.0
Minimum #3 51.5 87.5
Maximum #4 60.0 100.0
Minimum #4 67.0 112.5
Maximum #5 T2.5 125.0
Minimum #5 79.0 137.5
Maximum #6 83.0 150.0
Minimum #6 87.5 162.5

*Arbitrarily Assigned

For the data in Figures 3-7, the number of cycles observed and the reflector
voltage change for these cycles were determined. The corresponding frequency
change was then found from Figure 13, and the distance between reflectors was
calculated from Equation (8) in the form

(Zeﬂ)Af = (# of cycles) (9)
or
AR = c(# of cycles) (10)
2AF

where Af is nov the frequency change over the number of cycles observed. The
results of the radar data are compared with the actual separations in Table 6.
The actual separations were determined with a tape measure between the front
edges of the corner reflectors. Because the phase centers of the reflectors

21
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are not precisely known, the estimated error for this measurement is + 10 cm.
The agreement is quite good, better than the estimated error, except for the
one meter separation case, where the power curve severely distorts the inter-
ference pattern.

TABLE 6. REFLECTOR SEPARATION DETERMINED FROM RADAR DATA

Measured Number of Frequency Calculated Percent
Separation Cycles Observed Change Separation Error
(MHz) (meters)
5.0 4p 136 4.96 0.8%
4.0 31h 132 3.98 0.5%
3.0 21p 125.5 2.99 0.3%
2.0 11p 110.5 2.04 2.0%
1.0 16 51 1.47 47.0

An explanation of the fine structure (small oscillations) in some of the
data, particularly Figures 5, 6, 7, 9, and 10, is required. The large (~30 ft
by 35 ft), flexible metal door of the High Bay was approximately 20 meters
behind the corner reflectors. The radar boresight was at an oblique angle to
the door, so that under normal conditions no energy was reflected from the
door back to the radar. However, when the door was buffeted by the wind,
bringing it more perpendicular to boresight, its effect could clearly be seen
in the radar signal. The period of the oscillations is consistent with the
distance between the door and target.

Two interference patterns were recorded for a target consisting of three
corner reflectors. A 50 sm reflector was placed between the two initially
used. For the first pattern (Figure 15), the spacing was 4 meters between the
first and second and 2 meters between the second and third; for the second
pattern (Figure 16), the spacing was 3 meters and 2 meters. These patterns,
clearly more complex than those for two reflectors, are analyzed and compared
with simulated data in Section 6.

B. 140 GHz Radar Data

The measurements made with the 140 GHz radar were taken at the Road
Test Course Area, Redstone Arsenal, Alabama. The target range was about 480
meters, and two triangular trihedral corner reflectors of approximately 5,000
sm and 6,000 sm were used. Only the extrema were measured on an oscilloscope
vhile manually changing the transmitted frequency. The frequency calibration
method is described elsewhere.!9

The interference patterns for two different reflector separations are
shown in Figure 17 and Figure 18. Calculations of the radar range separation
of the corner reflectors using the radar data gave 1.61 meters and 2.85
meters; both values agree with the measued values within about 5%. Clearly,
the data suffer from nonlinearities in the receiver or transmitter. This
effect is further demonatrated in the response for a single corner reflector
(Figure 19), taken at a range of 400 meters. It is expected that such extreme
nonlinearities will make analysis of results for more than two reflectors
essentially impossible.
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V. COMPUTER SIMULATION

A computer simulation was developed to compare theoretical versus
measured results. Figure 20 details the sequence of actions in the program
which develops the theoretical response of the square law detector as the
voltage of the source is swept. Since the frequency output of the source is
not linear with the applied slewing (reflector) voltage, the plots are ampli-
tude versus slewing voltage. Figure 21 provides the sequence of actions
resulting in the discrete Fourier tranaform (DFT) of the theoretical result.
The FFT algorithm used to compute the DFT has been modified to compute the DFT
on a computer (HP #9830) which does not have a COMPLEX statement. The modifi-
cation divides all operations and coefficients into real and imaginary parts.

The HP #9830 uses a type of BASIC (peculiar to HP machines). The actual
programs are shown in Appendices A and B. A simple way of inputing the N
square law responses is to use the LINK command in the appropriate spot in the
square law detector response program (after statement number 620). This is
necessary for a small machine such as the HP #9830, since the programs are on
cassette tape and no statement equivalent to the FORTRAN CALL statement exists
in the HP BASIC language used. The program in Appendix C has the LINK com-
mand, directing the program to the FFT routine stored as program 2 on the )
casaette tape. In order to use this feature, the number of frequency steps
must be a power of 2. The maximum number of steps allowed by the structuring N
of the machine is 256. !

VI. COMPARISON OF EXPERIMENTAL AND THEORETICAL RESULTS

For the case of two reflectors, Figures 22 through 29 show a comparison 4
of simulation (dashed curves) and experimental results (solid curves). The }
simulation results shown include weighting by the power spectrum shown in
Figure 8 and the nonlinear frequency dependence on reflector voltage. The
frequency of modulation produced by the simulation is nearly identical to the
measured data. The relative amplitudes of the peaks in the experimental data
fall between the results obtained with the ideal (flat) power spectrum and
those obtaiined by weighting the simulation with the power spectrum of Figure
8.

Figure 30 demonstrates the effect of temperature on the output frequency
of the klystron oscillator. The specification sheet indicates that the Varian
VRB-2111A reflex klystron has a typical frequency/temperature coefficient of
-1.6 MHz/OC; all of the simulation results used this value. The effect of
this coefficient is to introduce a constant phase shift into the interference
patterns. This mechanism was used to adjust the phase of the simulated results
to agree with the experimental results, and the temperature correction factors
are shown in the figures.

The phase of the signal is really of no importance, since the desired
information is the Fourier transform of the measured data. Other sources of
slov frequency instability, such as power supply voltages will contridute a
phase factor which may be considered to be constant for a given measurement.

The effect of the nonlinear frequency dependence is to cause a changing

periodicity in the interference patterna. Figure 13 shows that the slope
becomes steeper on the frequency versus voltage curve at the upper end,
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resulting in a decrease in the period of the oscillation after the reflector
voltage change reaches 60 units. This effect has been accurately modeled in
the simulation by plotting the results as a function of reflector voltage
change, rather than as a function of frequency. Only when the frequency curve
is perfectly linear can the experimental data be considered to be an amplitude
versus frequency plot.

Figure 31 shows the output of the FFT for the data produced by the simu-
lation for a separation between reflectors of 6 meters. As noted in the
figure, the result is for a flat power spectrum and a perfectly linear sweep
of the source. Figures 32 and 33 show the results of the FFT of the data pro-
duced by the simulation for the other cases of interest. All of the plote are
normalized to the largest coefficient (dc term) of the FFT. Figures 34
through %6 display the same cases for a separation of 4 meters.

Figures 37 and 38 provide the results of FFT's of the simulated data for
the three reflector case without and with degradation. Figure 38 can then be
compared to Figure 39, which is an FFT of the experimental data obtained by
manually digitizing the data and calculating the spectrum. Figure 40 shows
the results for experimental data for separations of 3 meters, 2 meters. The
FFT of the actual data displays a broader and, hence, flatter spectrum that
the FFT of the simulation result. The combined effect of the nonlinear power
curve and nonlinear frequency sweep is to spread the power over the range
domain. These effects combine to mask the expected range separation lines and
introduce others which make the target appear more complicated.

VII. CONCLUSIONS AND RECOMMENDATIONS

For the data collected with two corner reflectors, there is excellent
agreement between the measured range separations and those calculated from the
radar results. There is, in general, good qualitative agreement between the
experimental interference patterns and those obtained from theoretical com-
puter simulation for both two reflector and three reflector data.

Most of the temperature shifts required to adjust the phase of the inter-
ference pattern (or, equivalently, to adjust the frequency span end points)
are not unreasonable. The temperature in the High Bay during the experiment
was low (~109C), while the surface body temperature of the klystron during
normal operation is probably higher than 50°C. In order to conserve tube
lifetime, the klystron was often turned off between measurements, occasionally
for long periods of time. Thus, large temperature variations were possible.

In addition, some phase change may be due to regulation or inadvertent
adjustment of the klystron beam (resonator) voltage. An increase in beam
voltage causes a decrease in frequency; a crude measurement indicated a sen-
sitivity on the order of -1 MHz/V.

Two factors contributed to the discrepancies between the theoretical and
experimental interference patterns with respect to amplitudes: (1) the inabi-
1lity to adequately characterize the power curve (note: actually the power
curve used should have been the interference pattern obtained with only one
reflector, since receiver characteristics are also included); and (2) because
the antenna beamwidths were so narrow, the unlikelihood that the corner
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reflectors were equally illuminated by the transmit antenna or equally sub-
tended by the receive antenna (especially for the measurements with three
reflectors). Discrepancies with respect to the positions of maxima and minima
along the "klystron reflector voltage change® axis result from the inability
to adequately obtain the klystron frequency dependence on reflector voltage;
spectrum analysis is required.

The agreement between the Fourier transform experimental and theoretical
data is less apparent, again, due to the problems cited above. Such agreement
is critical if the sensor is to be used to investigate complex targets. The
fine structure in the experimental data show up as spectral lines which indi-
cate wide range separations.

It is evident that the basic radar measurement, i.e., the interference
pattern, contains target information greatly modified by the dynamic sensor
characteristics. In order that the data are more representative of the target
than of the radar, the following radar attributes are deemed desirable:

1. The frequency of the source should be a linear function of the
control voltage, or the control voltage be such that the frequency sweep is
linear, and that a voltage proportional to frequency be provided.

2. The transmitted and received power curve should be flat over the fre-
quency diverse bandwidth, or it should be adequately characterized and
allowances made for it in signal processing; this requirement is increasingly
more critical for increasingly more complex targets.

3. The frequency diverse bandwidth should be as large as possible.

4. The transmitter and receiver should be temperature controlled, or
their temperature characteriatics should be determined over the operating
ranges and compensated for. .‘ote that a phase change in the interference pat-
tern doea not affect the Fourier transformed data, provided that the bandwidth
is sufficiently large.

5. A pulsed system is preferable to a continuous wave system, in order
to limit the effects of clutter (such as occurred, as a result of the High Bay
door). Pulse width can be adjusted to maximize target response while mini-
mizing clutter contamination. Pulse-to-pulse coherence is not required.

In terms of bandwidth, temperature effects, power curve and frequency
nonlinearities, and continuous wave operation, the 94 GHz reflex klystron is
clearly not an adequate source for application to complex targets. The radar
at 140 GHz had a reascnable bandwidth, but also had severely nonlinear power
characteristics. It is recommended, therefore, that further research be per-
formed in an effort to find suitable millimeter wave sources and to build and
test experimental systems achieving the desirable characteristics delineated.

Three millimeter wave (near 3mm) sources are currently available which
have large electronically tuned frequency diverse bandwidtha. The first, a 94
GHz solid state source employing a varactor controlled gunn diode oscillator,
has a bandwidth of 600 MHz with a continuous wave power output of 30mW.
Although this power level is probably too low for tactical systems, the device
is coherent, and pulse compression may be employed. The cost is about $16 k.
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The second source is a 80 GHz rising sun magnetron tube having a 3-4
kilowatt peak power output and a 1 GHz agile bandwidth. Rapid tuning is
achieved by movement of a small conducting ring at one end of a rising sun
resonant cavity. The tuning ring is supported and moved by a piezoelectric
transducer. The magnetron pulse duration is typically 50 ns with a duty cycle
of 0.0002. A high voltage power supply (100kW) is required. The cost of the
tube is only about $20 k.

Y™ 2 Nt

The third off-the-shelf source is an O-type backward-wave oscillator
(carcinotron), electronically tunable from 88 GHz to 92 GHz. Continuous wave
power over this bandwidth is 0.3 to 4 watts, although higher power can be
achieved with narrower bandwidths. Tube cost is $20-25 k. Kilovolt power
supplies are required.

In addition, there is in developement a 94 GHz coupled cavity traveling
wave tube (TWT) with a 2 GHz bandwidth. Power output is 100W with a 0.50
duty cycle.
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EZA DATHA 9.4120410.9, 31 345E+10,9, 4149E+18
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FEM THIZ PROGEAM WILL TAKE A H FPOIHT DFT OF AM IHMFUT DATA ARRAY Yol
REM THE TATR ARRAY MUST BE RERL. THE NUMEER OF DATA POIHTS MUST A POWER
FEM 0OF & HOT TO EXCEED & <258 POINTS). THIS PROGEAM HESUMES THAT ALL
FEM ARRAYZ HARE DIMEHSTOHED IWM THE CALLIMG PROGRAM.
FEM THIS IS AW IW FPLACE FFT. THE ELEMENTS OF DATA «Wols ARE REFLACED
FEW BY YTHE FFT COEFFICIEMTE.
H2=M1."2
13=H1-1
A=1
FEM GoIla=REAL PART OF Wil
REM COIx = IMAGIMAEY FAET OF Vil
FﬂF I=1 T H1
[I]=E
GEIJ=%[T]
HEHT I

GOSUE 2570

3 REM THE HEOYE STHTEMEMTS INITIALIZE %ol & 01

SE FEM TAE # DF POIMTS MUST SATISFY H=2tH

|:‘._'| T Pn‘:l ™o P r@ [ [0 |"'-_:l I"n_.'l l"n_:\ SRR R AN AYE AN ARl g ]

DISF "IHFLT M3
THPUT M

H1=0 )
FOR L=1 TO H |
Le=IHTE2tLy

L=IHTiLz 23 ¢
Ui=1

FOR [=J TO H1 STEP L2
II=THTI+L=Y

T1=0 LD IL I#i -0zl T #0020
Te=0GOI1 =2+ 00T =01
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HE T L

3 FOR I=1 TO M1

AlTI=5@ROCGI T I 2o+ 0D T 3120

IF ®W[I1#1 THEM 2468
2458 ¥Wi=xl1]
2458 HEXT 1
2438 STHLE @aMlaBs1
24208 FOR I=1 TO M1+l
2588 FLOT I-1a8011-81s+2
EJBI IFLOT 1s~HIT 181y +1
518 HEWT I
gJLu STOP
-S’B FOR I=1 T H3
2588 IF T »= J THEH 2620
2598 T1=60J1]
celd GLA1=G0T]
2ele GLI1=T1
2E28 F=MN2
2639 IF K »= J THEN 2&78
2640 J=J-F
2658 K=k.-Z
2668 GOTOD 2630
2670 I=A+k
2680 HEXT T
2690 RETURH
2709 END
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Fun]

IHPUT H
DISF "ENMTER TEMP CHAHGECC» "3

IMFLUT 1

FOR I=1 TO 21

pEAR AL

HEXT 1

FOR I=1 To 21

FERD FLT]

ME®T 1

DISF “EWNTER # OF STEPS™S

THRUT Hi

FOR L=1 TO H
DIZF "EMTER RCS FOF EACH SCATTER'S

DISF L3

THPUT =L
226 DISP "EMTER FANGECM: TO THE SCATTERER";
238 DISP Ls
248 IHPUT RLL]
‘BB HEST L
BB OFOR K=1 T Ml

T=ik-10s N1 200

I =2=THTOE

IF 7i1<1E-B¢ THEN 323@
GIKI=CFLIHT O 242 1-FL IMTCE 0+ 1 1021 +FL INTOZ 0+ I+ -1  GE+GR T+ 01 &
CLEI=CAC THTCZ v +2 1AL IHT 2 +1 10 =20 +A0 INT (22 +1 ]
GOTO 354
GLEI=FL INT(22+1 I+~ 1. FE+BE*CL D
COE I=AL IHTC20+1 ]
Yi=g
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FOE Jd=:9I+12 T H
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C=53E+05S
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GOTO S
SCALE

THEH Siw

K]

sHls B
FOF =1 T M1 ’
FLOT EaWDE 17N 3e+B

HEXT K

=TOF

OATH EE B, PES B EV3.0, 9358, 38,8, 99,8, 95,0, 28

ARy Gy

o)
A

T S AT T T T = T 0 T T T T T s T T

.
Daox

IATH .
DATH .
)
-l

N |
T T

£
h

Ba 3, 39820E+18. 9, 3909E+10, 3, 2937E+10

AZBEE+ 168,93, 4B35E+1 8.3, 40425E+10
T4E+1n-4 H9A5E+ 109, 4105SE+1 G

=,
A

ot

DoEe

LAHTA .«
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1_; ¥ J .
L
-
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M+ MLy

+

T = =} =~
= 5 = [T

i

4H-F+1H-L wu”4ﬁ+1u.9 41
GATH 41'E+1H-4 G1G5E+ 16,

L IHE i :
Hz=H1 2 f
r{3=r41~1 i
J=1 §
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| 768 FOR I=1 10 Hi
| F1a CL1l=6

728 LLT1=Y0]]

ME=T I

GOSUE 11e8

FEM THE HEOVE STRTEMEMTS IMITIALIZE oIy & 2013
FEM THE # 0OF FOIMTS MUST SATISFY H=2tH

DI "IHMPUT M"5§

IHFUT M

“1=9
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2=IHTv 210l

Tt et

G T 1%

[ N 00 IR In SR | B <O IR N I o

[ IR IR TN IR TN B TN It
QT

o e :
SN g B e s
‘-Aﬁﬁﬂu PESIDN 3 SRR P 25




Sy R ui
DU S UL SR facn]

D S Y Y ]
T Tl O

e b ek Ca e
3T T T 0 00 ) T
F'd= T
T AT

GO
SRR wa I WO IS SN

|

(N RN W P RV ¥ ]

e e s
o

30 Tt e i et s e T

[ i o J N

FOR T=. THIJI'
T1=THT S 1403
T1=0G0T1 900 ¢l 1
V=Gl [ 1402 146
SSEE

n1-7ﬁ+11|—cn1*uzp
K —|D+u IFYSIEIE
MEXT

0 HLP Ha Ml 248
FOR I=1 Tot
FLOT I-1s4[
TFLOT 1a-M[
HEXT 1

STOP

FOR I=1 TO M3

IF T = J THEW 1218
Ti=30.11]

GLJI=GLT]

GLII=T1

=M 2

IF K = J THEW 1&&@
d= -k

K=k 2

GOTD 1228

d= A+

HEXT 1

RETURM

END
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